Automatic Identification Systems (AIS) Data Use in Marine Vessel Emission Estimation

Roger Chang, Heather Perez, Richard Billings Eastern Research Group

18th Annual International Emissions Inventory Conference
April 15, 2009

Outline

- Texas State Waters Inventory Context
- AIS Background
- AIS Dataset
- Data Processing Methods
- Results
- Limitations
- Final Discussion of AIS Data Applicability in Inventory Efforts

Inventory Effort: Texas State Waters

- Texas has over 600 miles of tidewater coastline
- Needs for more accurate emission inventories
- Commercial Marine Vessel (CMV) emissions pose unique challenges
- Excludes Houston/Galveston Area
- Automatic Identification Systems (AIS) data for use in activity estimation
- Strengths and limitations of AIS data

AIS - Background

- AIS = Automatic Identification System
- Electronically transmits data to Vessel Traffic
 Service (VTS) stations and other ships
 - Vessel Identification
 - Position
 - Speed
 - Course
- Uses GPS, ship sensors and VHF radio

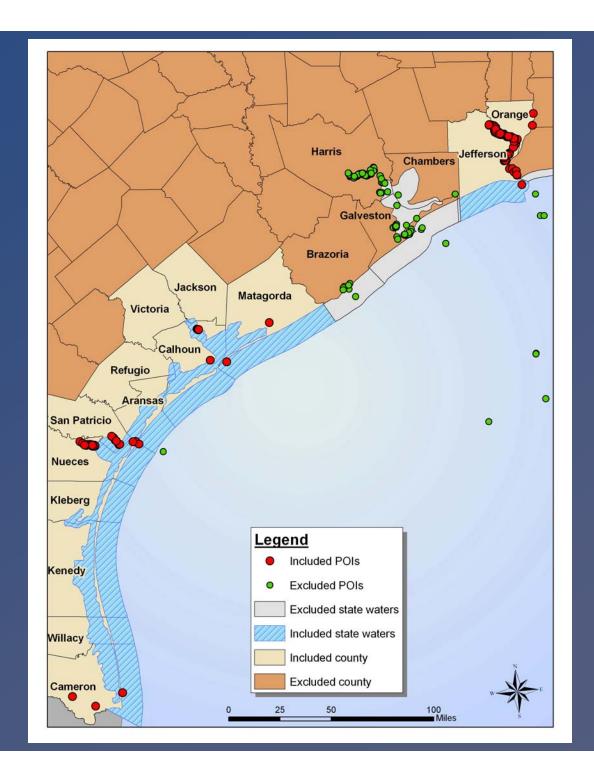
AIS Data Transmittal

Every 2 to 10 seconds (underway) and every 3 minutes (at anchor):

- Maritime Mobile Service Identity
- Status (anchor/underway/not under command)
- Rate of turn
- Speed
- Latitude and Longitude
- True Heading
- Time Stamp, Coordinated Universal Time (UTC)

AIS Data Transmittal

Every 6 minutes, underway or at anchor:

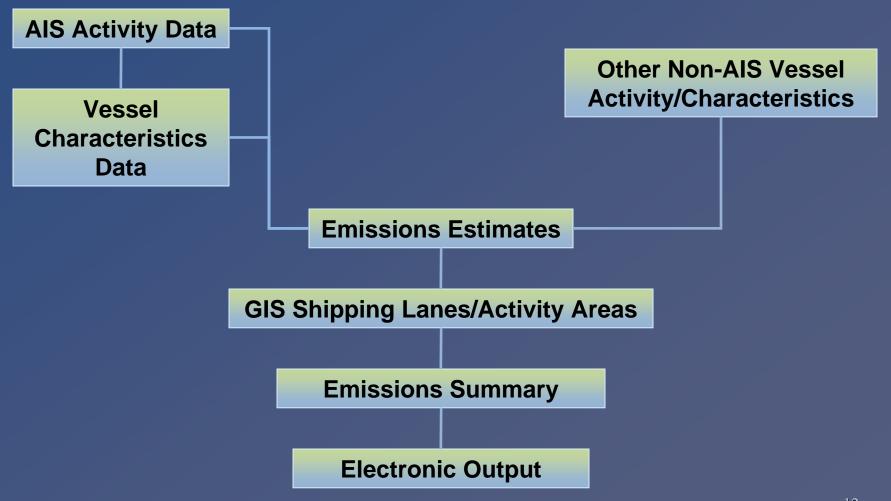

- International Maritime Organization's (IMO) ship identification number
- Vessel Name
- Ship Type/Cargo
- Ship Dimensions
- Destination
- Estimated time of arrival (ETA) at destination UTC

AIS Data – Coverage

- Required by IMO in 2000 for the following:
 - All international vessels ≥ 300 gross tons
 - All passenger ships
- Required by U.S. Coast Guard in 2005 for all CMV transiting U.S. inland waterways and ports
- Over 40,000 ships worldwide

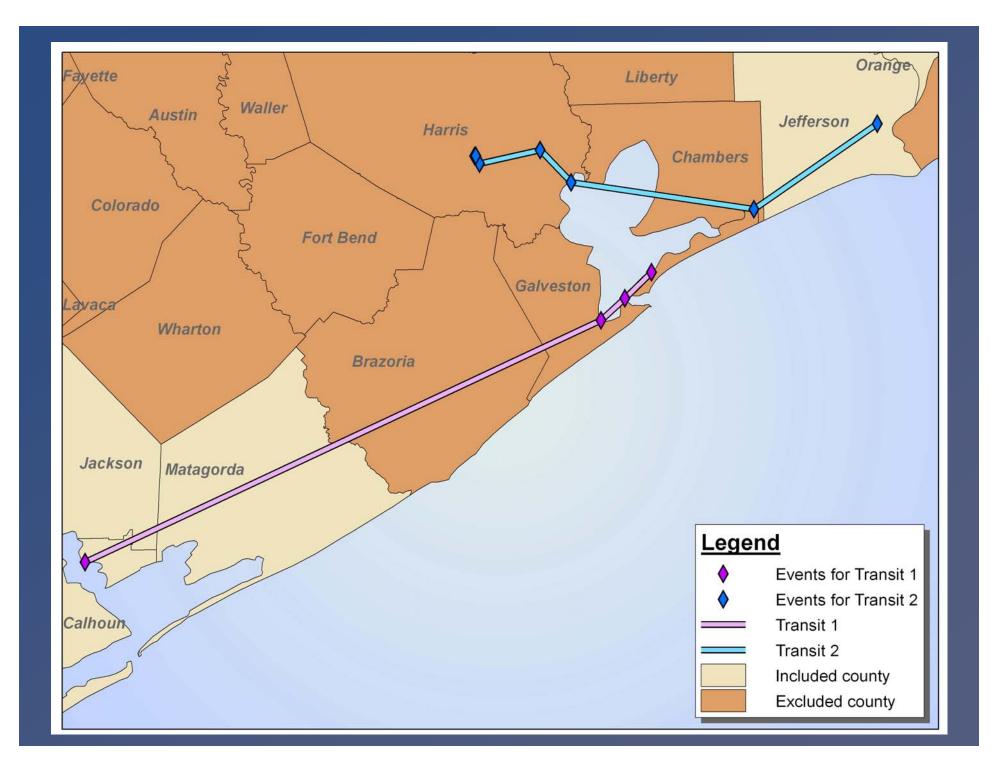
AIS Data Utilization

- AIS data obtained from AIRSIS, Inc.
- Area of Interest (AOI) included all of Texas state waters, including inland waterways and
 9 nautical miles from coastline
- Houston-Galveston (HGA) nonattainment area excluded
- Over 132 points of interest (POI) with vessel monitoring stations



AIS Data Set

- Base year 2007
- 2,912 matchable vessels
- Trips identified with a unique "Transit ID"
 - 82,355 transits
- Each transit had ≥ 1 "Event IDs" indicating an origin, waypoint, or destination
 - 545,141 events
- Origins/Destinations outside of the AOI were marked as "At Sea"



Methods – Overview

Methods - Summary

- Addressed erroneous AIS data using GIS
- Linked AIS data to Vessel Characteristics
- Gap-filled missing characteristics data
- Calculated horsepower-hours of operation
- Assigned emission factors from the Swedish EPA
- Estimated emissions

Methods – Linking AIS

- AIS data linked to vessel characteristic data sets
 - Lloyd's Register of Ships
 - American Bureau of Shipping
 - Bureau Veritas
- Linked by IMO, MMSI, vessel name, and vessel type
- Data gaps filled using averaged data by vessel type

Methods – Linking AIS

Description	Vessel Count	Percent
Total Vessels in AIS	3,398	100%
With IMO	2,657	78%
Matched using IMO	1,913	56%
Matched using MMSI or Name and Type	1,006	30%
Total Matched	2,919	86%

Methods — Hp-Hrs

- Hp-Hrs = HP * Number of engines * Hours of operation
- Inaccurate AIS time stamps
 - Hp-Hrs = HP * Number of engines * (Distance / Speed)
- 12% had the same origination and destination
 - Assist tugs, pilot boats, patrol boats: all time in state waters
 - Larger vessels ≤ 12 hours: intra-ports shift in state waters
 - Larger vessels > 12 hours: port to state/federal boundary and back

Methods – Calculating Emissions

- 2007 emissions for criteria and various HAPs
- $AE = AH \times CF_1 \times LF \times EF \times CF_2$ where:

AE = Annual Emissions

AH = Annual Activity (hp-hr)

 $CF_1 = Conversion factor (0.741 kW/Hp)$

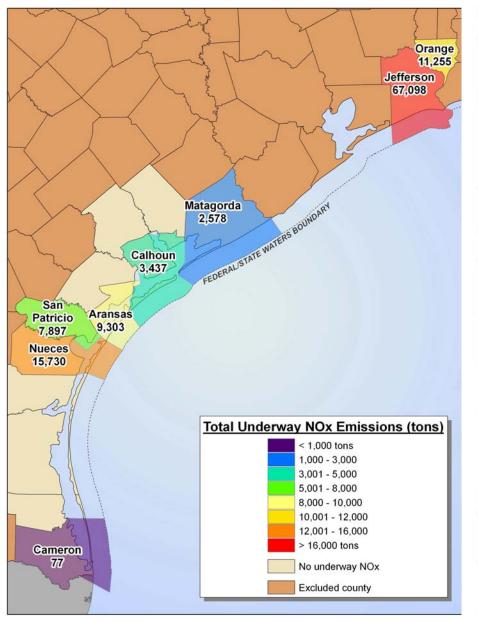
LF = Load factor: 80% cruising/maneuvering 10% (hoteling)

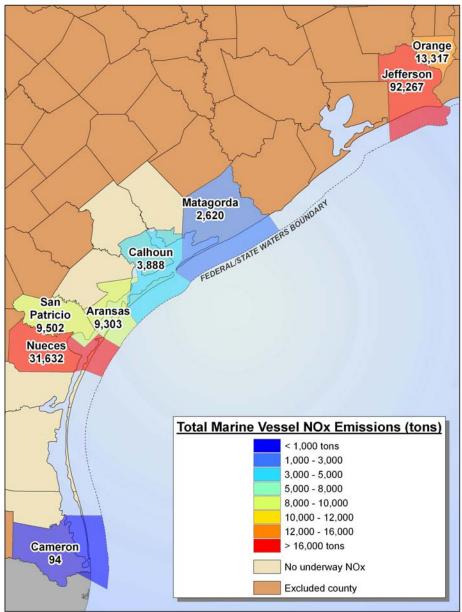
EF = Swedish emission factor (g/kw-Hr)

 CF_2 = Conversion factor (1.10231 E-6 ton/g)

Results – All Vessels

Pollutant	Annual (tons)	OSD (tons)
Carbon Monoxide	13,391.10	36.69
Volatile Organic Compounds	3,114.15	8.53
Nitrogen Oxides	162,621.94	445.54
Sulfur Oxides	92,425.76	253.22
Primary PM ₁₀ (Includes Filterables + Condensables)	7,874.50	21.57
Primary PM _{2.5} (Includes Filterables + Condensables)	7,874.50	21.57


Results – Tugs Comparison


Data and Comparison from Independent Reviewer

Area	U.S. ACE WCUS 2006 Vessel Movements	AIS Vessel Movement 2007*	Result
Sabine-Neches	~ 33,000	~ 33,000	AIS similar to WCUS
Corpus Christi	~ 6,000	12,809	AIS overreports
Brownsville	~ 1,100	(No POIs)	AIS underreports
Victoria	~ 2,400	1,677	AIS underreports **

^{*} Includes Blank/Unknown assumed to be tugs

^{**} Lower AIS movement may be indicative of decline of economic activity (Alcoa and Dow facilities closures)

Limitations

- Placement of POIs
- Vessels ≥ 300 Gross Tons
- Data Gaps
 - Missing records. Vessels leaving a port, not going past POIs, and appearing in another port
 - Vessels that seem to travel over land.
 - Poor vessel type data (probably includes tugs)

Discussion

- Automatic and electronic nature of AIS improves reporting consistency and minimizes data entry errors.
- Accurate to Tug Comparison with WCUS in biggest port area.
- More POIs will possibly improve AIS data
- Use of other datasets (e.g., U.S. ACE) to refine AIS data

Acknowledgements

- Theodore L. Kosub
- Sam Wells
- AIRSIS, Inc.
 - Dave Tyler
 - Brian Crawford
 - Kevin Crawford